Acta Cryst. (1997). C53, 1004-1006

$(K^{+})_{2}(18\text{-}crown\text{-}6\text{-}K^{+})_{2}[Sn_{2}Se_{6}]^{4-}$.4en: an $[Sn_{2}Se_{6}]^{4-}$ Anion with a Short $Sn\cdots Sn$ Distance

Horst Borrmann,^a Ayaaz M. Pirani^b and Gary J. Schrobilgen^b

^aMax Planck Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany, and ^bDepartment of Chemistry, McMaster University, Hamilton, Ontario L&S 4M1, Canada. E-mail: schrobil@mcmaster.ca

(Received 29 July 1996; accepted 1 April 1997)

Abstract

The title compound, dipotassium(+) bis[(1,4,7,10,13,-16-hexaoxacyclooctadecane)potassium(+)] hexaselenodistannate(4–) tetrakis(ethylenediamine) solvate, K₂-[K(C₁₂H₂₄O₆)]₂[Sn₂Se₆].4C₂H₈N₂, (1), has been prepared by the extraction of the alloy KSn_{0.67}Se_{1.93} in en (en is ethylenediamine) in the presence of 18-crown-6 followed by addition of tetrahydrofuran. The geometric parameters observed for the Sn₂Se₆^{4–} anion in (1) are significantly different from those previously reported in the (enH⁺)₂(2,2,2-crypt-K⁺)₂ (2,2,2-crypt is 1,10-diazabicyclo-4,7,13,16,21,24-hexaoxa[8.8.8]hexacosane), K⁺-(NMe₃⁺)₃ and M⁺ (M = Na, K, Rb, Cs) salts.

Comment

Compound (1) crystallizes in the space group $P2_1/c$ and consists of a centrosymmetric Sn₂Se₆⁴⁻ anion (Fig. 1) bridging two symmetry-related unsequestered K⁺ cations, forming K⁺...Sn₂Se₆⁴⁻...K⁺ layers. These layers are sandwiched between two symmetry-related 18-crown-6-K⁺ cations and are bridged to these cations by ethylenediamine (en) solvent molecules. The unsequestered K⁺ ions are coordinated to an additional en solvent molecule (Fig. 2). The structure of the 18crown-6-K⁺ cation is similar to that determined previously in K⁺(18-crown-6-K⁺)₂GaTe₃²⁻ (Park, Salm & Ibers, 1995) and therefore will not be discussed. The geometry of the $Sn_2Se_6^{4-}$ anion (approximate D_{2h} point symmetry) is based on two edge-sharing distorted SnSe₄ tetrahedra and is isostructural with B_2H_6 (Greenwood & Earnshaw, 1984), $W_2Se_6^{2-}$ (Lu, Ansari & Ibers, 1989) and $Ge_2Se_6^{4-}$ (Eisenmann & Hansa, 1993). Although the $Sn_2Se_6^{4-}$ anion has been previously characterized by X-ray crystallography in $(enH^+)_2(2,2,2-crypt-K^+)_2Sn_2Se_6^{4-}$ (Campbell, Devereux, Gerken, Mercier, Pirani & Schrobilgen, 1996), $K^+(NMe_3^+)_3Sn_2Se_6^{4-}$ (Campbell, Devereux, Gerken, Mercier, Pirani & Schrobilgen, 1996), $Na_4Sn_2Se_6$.-13H₂O (Krebs & Uhlen, 1987), K₄Sn₂Se₆ (Eisenmann & Hansa, 1993), Rb₄Sn₂Se₆ (Sheldrick & Schaaf, 1994) and Cs₄Sn₂Se₆ (Sheldrick & Braunbeck, 1989), the $Sn_2Se_6^{4-}$ anion in (1) is compressed along the Sn...Sn vector, resulting in geometric parameters which vary significantly from those of the previously reported structures. The Sn $\cdot \cdot \cdot$ Sn distances and the Sn - Se_b - Sn, Se_b —Sn— Se_b and Se_t —Sn— Se_t (b is bridging and t terminal) bond angles in (1) and in the previously characterized $Sn_2Se_6^{4-}$ anions are summarized in Table 2. The Sn $\cdot \cdot \cdot$ Sn distance in (1), 3.4930(9)Å, is significantly shorter (> 3σ) than those observed in the previously characterized anions, and the Sn-Se_b-Sn and Se_b —Sn— Se_b bond angles are significantly smaller and larger, respectively, than in the previously reported structures. The Se_t—Sn—Se_t bond angle in (1) is similar only to that observed in Na₄Sn₂Se₆.13H₂O but is significantly different from those observed in the other salts. The average terminal [2.464(2)Å] and bridging [2.590(4) Å] bond distances in (1) are similar to those established in the previously reported structures [average: terminal 2.460(8) and bridging 2.589(7) Å].

In all structures, the Sn—Se_t distances are shorter than the Sn—Se_b distances, which is consistent with the expected higher relative bond orders of the Sn— Se_t bonds (Campbell *et al.*, 1996). A similar trend has also been observed in the related Sn₂Te₆⁴⁻ (Huffman, Haushalter, Umarji, Shenoy & Haushalter, 1984; Ansari, Bollinger & Ibers, 1993; Campbell *et al.*, 1996), Sn₂Te₇⁴⁻ (Brinkmann, Eisenmann & Schäfer, 1985)

Fig. 1. View of the $[Sn_2Se_6]^{4-}$ anion in (1) with displacement ellipsoids drawn at the 70% probability level.

Fig. 2. View of the [18-crown-6-K⁺]...en...K⁺(en)...Sn₂Se₆⁴⁻...K⁺(en)...en...[18-crown-6-K⁺] structural unit with displacement ellipsoids drawn at the 70% probability level. H atoms have been omitted for clarity.

and $Sn_4Se_{10}^{4-}$ (Campbell, DiCiommo, Mercier, Pirani, Schrobilgen & Willuhn, 1995) anions.

It should be noted that the $Sn_2Se_6^{4-}$ anion has also been structurally characterized by X-ray crystallography in $(enH_2)_2Sn_2Se_6$ (Sheldrick & Braunbeck, 1993). Although the Se_b —Sn—Se_b bond angle [95.1 (1)°] in $(enH_2)_2Sn_2Se_6$ is similar to that in (1), the Sn—Se_b— Sn bond angle [84.91 (1)°] is larger and the Sn···Sn distance, which is anticipated to be slightly larger, is actually shorter [3.480 (1) Å] than in the present and previously reported structures (Table 2). The Sn—Se_t and Sn—Se_b distances in $(enH_2)_2Sn_2Se_6$ are 2.460 (1) and 2.578 (1) Å, respectively.

Experimental

The extreme air and moisture sensitivity of the compounds used required all manipulations to be carried out under rigorously anhydrous and oxygen-free conditions in a nitrogen-atmosphere dry box (two-station Vacuum Atmospheres Model DLX, with moisture and oxygen levels < 0.1 p.p.m.; for general solid and crystal handling), on a general-purpose grease-free glass vacuum line equipped with Pyrex/Teflon stopcocks (J. Young Scientific Glassware) and in a glove bag (for solution handling) which had been purged with dry nitrogen for at least 12 h prior to use. The ternary KSnSe₂ alloy was prepared as previously described (Burns, Devereux, Granger & Schrobilgen, 1985) by fusion of the elements (K 0.9591 g, 24.53 mmol; Sn 2.7575 g, 23.23 mmol; Se 3.7318 g, 47.26 mmol) inside a thick-walled Pyrex glass tube. The resulting alloy was ground into a fine powder and its composition was corrected for the recovered tin lump (0.8151 g, 6.87 mmol) to $KSn_{0.67}Se_{1.93}$. The $KSn_{0.67}Se_{1.93}$ alloy (0.1040 g, 0.384 mmol) was transferred into one arm of a two-arm Pyrex vessel and extracted in en (5 ml) in the presence of 18-crown-6 (0.0930 g, 0.352 mmol) with an 18-crown-6:K⁺ ratio of 1.00:0.92. After two weeks, the deep-yellow solution was carefully decanted off the alloy residue into the second arm of the reaction vessel. An excess of THF (1:2 v/v) was condensed under static vacuum at 273 K into the first arm of the reactor. Yellow platelets of (1) were obtained by the vapor-phase diffusion of the THF into the en solution under static vacuum.

Crystal data

$K_2[K(C_{12}H_{24}O_6)]_2[Sn_2Se_6]$	Mo $K\alpha$ radiation
$4C_2H_8N_2$	$\lambda = 0.71073 \text{ Å}$
$M_r = 1636.58$	Cell parameters from 1775
Monoclinic	reflections
$P2_{1}/c$	$\theta = 3-29^{\circ}$
a = 15.634(2) Å	$\mu = 4.900 \text{ mm}^{-1}$
b = 8.4790(10) Å	T = 150(2) K
c = 23.404(3) Å	Platelet
$\beta = 108.600 (10)^{\circ}$	$0.35 \times 0.32 \times 0.12$ mm
V = 2940.4 (6) Å ³	Yellow
Z = 2	
$D_{\rm r} = 1.848 {\rm Mg} {\rm m}^{-3}$	
D_m not measured	

Data collection

Stoe Imaging Plate Diffractometer System (IPDS) 7794 independent reflections $R_{int} = 0.070$ $\theta_{max} = 29^{\circ}$ 21

11

Oscillation scans	$h = -22 \rightarrow 21$
Absorption correction:	$k = -11 \rightarrow 11$
redundant reflections	$l = -32 \rightarrow 33$
(Borrmann, 1997)	
$T_{\rm min} = 0.433, T_{\rm max} = 0.646$	
27 121 measured reflections	

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.002$
$R[F^2 > 2\sigma(F^2)] = 0.030$	$\Delta \rho_{\rm max} = 1.513 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.080$	$\Delta \rho_{\rm min} = -0.961 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.033	Extinction correction: none
7733 reflections	Scattering factors from
449 parameters	International Tables for
All H atoms refined	Crystallography (Vol. C)
$w = 1/[\sigma^2(F_o^2) + (0.048P)^2]$	
+ 0.481 <i>P</i>]	
where $P = (F_0^2 + 2F_c^2)/3$	

Table 1. Selected geometric parameters (Å, °)

Sn1-Sn1'	3.4930 (9)	Se2—K2 ¹	3.5723 (8)
Sn1-Se1	2.4665 (4)	Se3—K2 ⁱ	3.6030 (8)
Sn1—Se2	2,4616(4)	K1-0100	3.046 (2)
Sn1—Se3	2.5941 (4)	K1—O103	2.897 (2)
Sn1—Se3 ¹	2.5852 (5)	K1—O106	3.052(2)
Sn1-K1"	4.0218 (8)	K1—O109	2.879 (2)
Sn1—K2	4.0695 (8)	K1—0112	3.030(2)
Sn1—K2 ⁱ	4.1397 (8)	K1—0115	2.843 (2)
Se1-K1"	3.6946 (7)	K1N303 ^{iv}	3.330 (3)
Se1-K2	3.4534 (8)	K2-N200	2.890 (4)
Se1—K2 ⁱⁱⁱ	3.5604 (8)	K2-N300 ^v	2.874 (3)
Se2—K1 ⁱⁱ	3.7952 (8)	K2K2 ^m	4.2403 (14)
Sn1 ⁱ —Se3—Sn1	84.823 (12)	Se2—Sn1—Se3	109.831 (13)
Se1—Sn1—Se3	113.149 (13)	Se2—Sn1—Se3 ⁱ	110.065 (14)
Se1—Sn1—Se3 ⁱ	108.506 (12)	Se3 ⁱ -Sn1-Se3	95.176 (12)
Se2—Sn1—Se1	117.748 (12)		

Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 - x, 2 - y, -z; (iv) x, y, 1 + z; (v) x, 1 + y, z.

Table 2. Sn. $\cdot \cdot$ Sn distances (Å) and Sn—Se_b—Sn, Se_b— $Sn - Se_b$ and $Se_t - Sn - Se_t$ bond angles (°) observed in known $Sn_2Se_6^{4-}$ salts

Counter-cation	Sn···Sn	Sn-Se _b -Sn	Se _b -Sn-Se _b	Se _t -Sn-Se _t
$(K^{+})_{2}(18$ -crown-6- $K^{+})_{2}$	3.4930 (9)	84.823 (12)	95.176 (12)	117.748 (12)
$(enH^{+})_{2}(2,2,2-crypt-K^{+})_{2}$	3.557 (1)	87.05 (2)	92.95 (2)	111.95 (6)
$K^{+}(NMe_{3}^{+})_{3}$	3.578 (4)	87.06 (7)	92.94 (7)	119.12 (3)
Na ⁺	3.529 (2)	86.07 (5)	93.94 (5)	117.68 (6)
K⁺	3.514	85.5	94.5	121.2
Rb⁺	3.518	85.4 (1)	94.6(1)	120.1 (1)
Cs ⁺	3.504(1)	85.26 (5)	94.74 (5)	118.91 (6)
$(enH_2^*)_2$	3.480 (1)	84.91 (1)	95.1(1)	115.1 (1)

Crystal data were collected on a single crystal which was sealed under dry nitrogen in a 0.5 mm Lindemann glass capillary. A Stoe Imaging Plate Diffractometer System equipped with a one-circle goniometer and a graphite monochromator was used for data collection. Data were collected in two stages: (a) 500 exposures (4 min per exposure) were obtained at 48 mm with $0 < \varphi < 150^{\circ}$ and with the crystal oscillated through 0.3° in φ ; (b) 200 exposures (2 min per exposure) were obtained at 125 mm with $0 < \varphi < 200^{\circ}$ and with the

crystal oscillated through 1° in φ . The two data sets were merged and the final data set contained 92% of the calculated number of reflections.

All computations were carried out on a Silicon Graphics Inc. Model 4600 PC workstation. During refinement, 61 reflections with $F^2 < -2\sigma(F^2)$ were suppresed. In the final difference map, the maximum electron density was located around the $Sn_2Se_6^{4-}$ anion.

Data collection: IPDS (Stoe & Cie, 1995). Cell refinement: IPDS. Data reduction: IPDS. Program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1995). Program(s) used to refine structure: SHELXTL-Plus. Molecular graphics: SHELXTL-Plus. Software used to prepare material for publication: SHELXTL-Plus.

The authors thank the Natural Sciences and Engineering Research Council of Canada for support in the form of a research grant and the Ontario Ministry of Education and Training for the award of a graduate scholarship to AMP. We are also grateful to Professor A. Simon, MPI Stuttgart, for making the X-ray equipment available.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1163). Services for accessing these data are described at the back of the journal.

References

- Ansari, M. A., Bollinger, J. C. & Ibers, J. A. (1993). Inorg. Chem. 32. 231-232.
- Borrmann, H. (1997). Unpublished results.
- Brinkmann, C., Eisenmann, B. & Schäfer, H. (1985). Mater. Res. Bull. 20, 299-307.
 - Burns, R. C., Devereux, L. A., Granger, P. & Schrobilgen, G. J. (1985). Inorg. Chem. 24, 2615-2624.
 - Campbell, J., Devereux, L. A., Gerken, M., Mercier, H. P. A., Pirani, A. M. & Schrobilgen, G. J. (1996). Inorg. Chem. 35, 2945-2962.
- Campbell, J., DiCiommo, D. P., Mercier, H. P. A., Pirani, A. M., Schrobilgen, G. J. & Willuhn, M. (1995). Inorg. Chem. 34, 6265-6272
- Eisenmann, B. & Hansa, J. (1993). Z. Kristallogr. 203, 299-302.
- Greenwood, N. N. & Earnshaw, A. (1984). Chemistry of the Elements, ch. 6, pp. 174-181. Oxford: Pergamon Press.
- Huffman, J. C., Haushalter, J. P., Umarji, A. M., Shenoy, G. K. & Haushalter, R. C. (1984). Inorg. Chem. 23, 2312-2315.
- Krebs, B. & Uhlen, H. (1987). Z. Anorg. Allg. Chem. 549, 35-45.
- Lu, Y.-J., Ansari, M. A. & Ibers, J. A. (1989). Inorg. Chem. 28, 4049-4050.
- Park, C.-W., Salm, R. J. & Ibers, J. A. (1995). Angew. Chem. Int. Ed. Engl. 34, 1879-1880.
- Sheldrick, G. M. (1995). SHELXTL-Plus. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, W. S. & Braunbeck, H. G. (1989). Z. Naturforsch. Teil B, 44, 851-852
- Sheldrick, W. S. & Braunbeck, H. G. (1993). Z. Anorg. Allg. Chem. 619, 1300-1306.
- Sheldrick, W. S. & Schaaf, B. (1994). Z. Anorg. Allg. Chem. 620, 1041-1045.
- Stoe & Cie (1995). IPDS. Imaging Plate Diffractometer System. Stoe & Cie, Darmstadt, Germany.